CHAPTER 2: OPEN CHANNEL FLOW
OPEN CHANNEL FLOW
- A branch of hydraulics and fluid mechanics, is a type of liquid flow within a conduit with a free surface, known as a channel. The other type of flow within a conduit is pipe flow. These two types of flow are similar in many ways but differ in one important respect: the free surface. Open-channel flow has a free surface, whereas pipe flow does not.
4 CLASSIFICATION OF OPEN CHANNEL:
1. Classification 1
- Natural Channels [natural open channels include all channels that exists naturally on the earth]
- Artifical Channels [the channels develops by men]
2. Classification 2
- Prismatic Channels [unvarying cross-section channel and constant bottom slope]
- Non-prismatic Channels [unconstant bottom slope]
3. Classification 3
- Rigid Boundary Channels [a channel with imnovable bed and sides]
- Mobile Boundary Channels [composed of loose sedimentary particles moving]
4. Classification 4
- Large Slope Channels [having bottom slope greater than 1 in 10]
- Small Slope Channels [artifical channel like drops and chutes have for more than 1 in 10]
TYPES OF FLOW IN CHANNEL:
1. Steady State and Unsteady State
- Steady state have no changes in velocity patterns and magnitude with time at a given channel cross-section.
Unsteady state have changing velocity with time at a given cross-section.
2. Laminar Flow and Turbulent Flow
- Laminar flow having lowest speed flow of velocity.
Turbulent flow having highest speed flow of velocity.
3. Uniform Flow and Non-uniform Flow
- Uniform flow have constant flow rate.
- Non-uniform flow have to reaches of channel, bottom slope, cross-section slope, and cross-section size change.
UNIFORM STEADY FLOW:
- MANNING EQUATION
Q=VA=[1.49/n]×A×R⅔×√S {ft}
Q=AV=[1.00/n]×A×R⅔×√S {unit}
• A=Area of flow
• S=Slope
EXAMPLES:
Water flow in a rectangular 6 ft-wide timber flume with n=0.013, what channel slope is needed to convey water uniformly at 20 ft/s when the depth is 3 ft?
Solution:
A= 6×3=12
V= 20 ft/s
n= 0.013
P= 3+6+3=12
S=?
Q=VA=[1.49/n]×A×R⅔×√S
R=A/P=18/12=1.5
Q =(20)(18)=[1.49/0.013](18)(1.5)⅔(√S)
= 360=2703.40 √S
√S =360/2703.40
S½ =0.1332
S =(0.1332)²
S =0.0177
NON-UNIFORM STEADY FLOW
- Gradually Varied Flow
H= Z+(P/pg)+(V²/2g)=Z+y+(V²/2g)
• Z= elevation head
• y= gage pressure head
• V²/2g=dynamic head
- Taking datum Z=0 as the bottom
Es= y+ (V²/2g) Es= y+(Q²/2gA²)
q= kadar air per unit lebar
q= Q/B
Q= qB
- For a channel with constant width, b
Q=AcV=ybv
- Plot of Es vs y for constant V and b
Es= y + (Q²/2gb²y²)
- The three parameter can be correlated in two situation:
E value is constant
Yc= 2E/3
qm= V(gyc)³
q value is constant
Yc= (q²/g)⅓
E min= 1.5 yc
- Non-uniform flow can be caused by:
- Differentiate in depth of channel
- Differentiate in width of channel
- Differentiate in the nature of bed
- Differentiate in slope of channel
- Obstruction in the equation of flow
- Frounde Number
Fr= V/(√gh)
Rapidly Varied Flow
- Depth ratio:
y2/y1= 0.5 ( -1 + √8Fr²)
- Head loss associated with hydraulics jump
hL= y1-y2 + [V1² - V2²/2g] = y1-y2 + [y1Fr²/2] [1-(y1²/y2²)]
- Dissipation ration:
hL/Es= hL/(y+V²/2g)
EXAMPLE :
Sebuah saluran yang panjang 3m lebar membawa aliran pada kadar 12m³/s. Pada satu titik dalam saluran ini, terdapat perubahan cerun dengan mengejut, daripada 0.015 kepada 0.0016. Gunakan formula manning,n=0.013 dan tentukan:
- Sama ada lompatan hidraulik akan berlaku
- Kedudukan lompatan jika berlaku
- Kuasa yang terlesap dalam lompatan
SOLUTION:
b= 3m
Q= 12 m³/s
n= 0.013
A=by=3y
P= b+2y
= 3+2y
R= by/b+2y
= 3y/3+2y
So= 0.015
(1)
(1)
Qn/So½= AR⅔
(12)(0.013)/(√0.015)= (3y)(3y/3+2y)⅔
1.2737= (3y)(3y/3+2y)⅔
Try and Success!
1. y= 0.812
= (3)(0.812) [(3)30.812)/ 3+2(0.812)]⅔
= 1.589
2. y= 0.7
= (3)(0.7) [(3)(0.7)/ 3+2(0.7)]⅔
=1.28
So= 0.0016
Qn/So½= AR⅔
(12)(0.013)/(√0.0016)= (3y)(3y/3+2y)⅔
3.9= (3y)(3y/3+2y)⅔
Try and Success!
1. y=1
=(3)(1) [(3)(1)/3+2(1)]⅔
=2.13
2. y=1.5
=(3)(1.5) [(3)(1.5)/3+2(1.5)]⅔
=3.71
3. y=1.6
=(3)(1.6) [(3)1.6)/3+2(1.6)]⅔
=3.9~4.0
(2) L=6y
=6(1.6)
=9.6 m
(3) kuasa yang terlesap
Q=AV
V1= Q/A1
= 12/(3)(0.7)
= 5.714
V2= Q/A2
= 12/(3)(1.6)
= 2.5

Specific Energy
Example :
Sebuah saluran segi empat tepat 3m lebar membawa air pada kadar alir 12m³/s mempunyai nombor Froude = 0.8.
1. Berapakah ukur dalam gentingnya?
2. Berapakah ketinggian air dalam saluran ?
3. Apakah keadaan aliran dalam saluran ?
4. Berapakah kecerunan saliran jika pekali Manning, n = 0.035 ?
5. Berapakah tenaga tentu aliran sungai ?
6. Dapatkan ukur dalam sela bagi aliran ?
7. Berapakah nilai nombor Froude pada ukur dalam sela ?
8. Apakah keadaan aliran dalam saluran pada ukur dalam sela ?
Solution for Question 1 :
Q = 12m³/s

Solution for Question 2 :
Solution for Question 3 :
Solution for Question 4 :
Pekali Manning, n = 0.035
Solution for Question 5 :
Solution for Question 6 :
1st try, y=1
2nd try, y=0.8
3rd try, y=1.1
4th try, y=1.02
Solution for Question 7 :
Solution for Question 8:
Answer : Supercritical flow.
Comments
Post a Comment